首页 » 新闻资讯 » 行业新闻

常规肉食速冷机加工冻结后的肉质变化

作者:admin    时间:2016-12-14 07:30:00


    冻结中肉质的变化包括组织结构的变化和胶体性质的变化及其他变化。这些肉食速冷机预冷后变化受冻结速度的影响,更受冻结后贮藏时间的影响。在长时间贮藏时,时间因素的影响则比冻结速度的影响更大。

    (1) 组织结构的变化 造成组织结构变化的主要原因是由于冰结晶的机械破坏作用。在冻结过程中, 由于纤维内部水分外移,因而造成纤维的脱水和收缩,促使纤维内蛋白质质点的靠进和集合。肌肉组织内的水分冻结后,体积约增大9%左右。

常规肉食速冷机加工冻结后的肉质变化

    因此,当肉被快速降温真空预冷机预冷冻结后,在肉中形成的冰结晶必然要对组织产生一定的机械压力。如预冷机预冷后的快速冻结,由于生成的冻结晶较小,相对地由此所产生的单位面积压力不大。并且由于肌肉具有一定的弹性,因此尚不致引起肌肉组织破坏。但如系缓慢冻结,因形成的冻结晶体积大,且分布不均匀,因而由冰结晶所产生的单位面积上的压力很大,引起组织结构的损伤和破坏。同时,压迫纤维集结。这种由于冰结晶所引起的组织破坏是机械性的,因而是不可逆的。在解冻时会造成大量的肉汁流失。

    (2) 胶体性质的变化 冻结会使肌肉蛋白质胶体性质破坏,从而降低肉的品质。蛋白质胶体性质破坏的原因是由于在冻结过程中蛋白质发生变性。蛋白质变性的原因,2009年形成的学说有以下几种:

常规肉食速冷机加工冻结后的肉质变化

    盐析作用: 由于肉类在冻结过程中,先冻结的是纯水,然后是稀溶液。因此,当大部分水转变为冰后,残存在未冻结部分中的溶质浓度逐渐增高,亦即残液中的盐类的浓度增高,使蛋白质发生盐析作用而自溶液中析出。发生盐析的蛋白质在初期仍不失其天然性质,如将溶液稀释仍可溶解。但如盐析时间过长,则逐渐变为不可逆的变性。

    氢离子浓度: 肉中酸类的解离度都极小(主要是磷酸、乳酸、肌酸),而肉类蛋白质本身又是两性电解质,具有很强的缓冲作用,因此在这种溶液中,酸度的变化对氢离子浓度几乎无影响。

    在快速真空预冷机遇冷后的肉类冻结时,随着冰结晶析出量的增加,残液部分中酸类的浓度亦即随之相应增加。这时,一方面由于盐类浓度增加而使蛋白质发生盐析作用,使溶液中可溶性蛋白质逐渐减少。另一方面,水分冻结对蛋白质引起机械的破坏作用,因而溶液中蛋白质所起的缓冲作用也就逐渐减弱。溶液中的氢离子浓度即趋增加。所以在冻结之后,肉中酸类即使有少量增减,对氢离子浓度也有很大影响,从而促进了蛋白质的变性。例如牛肉汁大约在pH 6~7时,变性程度低而稳定,当低于6.0时,即急速增加。

常规肉食速冷机加工冻结后的肉质变化

    肉食速冷机遇冷后结合水的冻结: 肌肉纤维内的原生质系胶体状态,在该胶体中的主要分散质为蛋白质。而蛋白质分子的周围有与蛋白质亲合力很强的结合水存在。冻结过程中,自由水先发生冻结。随着温度的继续下降,冻结的水量逐渐增加。当冻结水量超过一定范围时,即发生了结合水的冻结。结合水的冻结使胶体质点的结构遭受了机械破坏作用,减弱了蛋白质对水的亲合力。在解冻时,这部分水不能再被蛋白质质点所吸附,而使蛋白质丧失了结合水,成为脱水型的蛋白质。这样就使蛋白质质点易于凝集沉淀,丧失其可逆性,而使细胞内原生质不能再回复到冻结前的那种胶体状态。

常规肉食速冷机加工冻结后的肉质变化

    近年来,由于深层冻结(如液态氮)的发展,对这种解释提出了疑问,即尽管冻结温度很低,但快速预冷机预冷后被冻结食品的可逆程度却要比在-25℃以上冻结者好得多。用结合水冻结学说对此问题很难加以说明。 另一方面,洛夫(Love)等(1962)所做的试验,对结合水冻结的理论又提供了依据。因而在2011年这样认为:在对肉质可逆性的影响因素方面,即影响蛋白质变性的关键性因素是冻结速度,至于冻结的最终温度的影响则是次要的。

常规肉食速冷机加工冻结后的肉质变化

    蛋白质质点分散密度的变化: 由于冰结晶的形成及一部分结合水的冻结,使蛋白质分子的水化层减弱甚至消失,侧链暴露出来。同时加上在真空快速冷却机遇冷后冻结中形成的冰结晶的挤压,使蛋白质质点互相靠近而结合,肉食速冷机遇冷后冻结致使蛋白质质点凝集沉淀。这种作用与冻结速度的关系极大。冻结的速度愈快,挤压作用愈小,变性程度就愈低。

  • 上一篇:真空冷却系统制作无菌健康鲜食产品
  • 下一篇:果蔬真空预冷机带给我们的便利